Graphene Oxide Nanosheets Modified with Single-Domain Antibodies for Rapid and Efficient Capture of Cells.
نویسندگان
چکیده
Peripheral blood can provide valuable information on an individual's immune status. Cell-based assays typically target leukocytes and their products. Characterization of leukocytes from whole blood requires their separation from the far more numerous red blood cells.1 Current methods to classify leukocytes, such as recovery on antibody-coated beads or fluorescence-activated cell sorting require long sample preparation times and relatively large sample volumes.2 A simple method that enables the characterization of cells from a small peripheral whole blood sample could overcome limitations of current analytical techniques. We describe the development of a simple graphene oxide surface coated with single-domain antibody fragments. This format allows quick and efficient capture of distinct WBC subpopulations from small samples (∼30 μL) of whole blood in a geometry that does not require any specialized equipment such as cell sorters or microfluidic devices.
منابع مشابه
Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملMn (III) salen complex supported on graphene oxide nanosheets as a highly selective and recoverable catalyst for the oxidation of sulfides
In this study, Mn (III) salen complex was synthesized and immobilized onto the graphene oxide, which is modified by 3-chloropropyltrimethoxy silane. Heterogeneous catalyst was characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, fourier transform infrared spectra, nitrogen adsorption−desorption isotherm and atomic absorption spectroscopy. The catalyt...
متن کاملVoltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملVoltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملElectrocatalytic Determination of Glutathione Using Transition Metal Hexacyanoferrates (MHCFs) of Copper and Cobalt Electrode Posited on Graphene Oxide Nanosheets
A glassy carbon electrode was modified with graphene oxide nanosheets and a hybrid of copper-cobalt hexacyanoferrate. The nanocomposite was characterized by cyclic voltammetry, FT-IR and scanning electron microscopy. Cyclic voltammetry showed a stable and reversible redox pair with surface confined characteristics in phosphate buffer solution (0.1 M, pH 3). Hydrodynamic amperometry was used for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry
دوره 21 48 شماره
صفحات -
تاریخ انتشار 2015